HPV Epidemiology Predicts Cost-Effective Cervical Screening

Mark Schiffman, MD, MPH Nicole Gastineau Campos, PhD

Clinical Epidemiology Unit, Clinical Genetics Branch, DCEG

NCI Moonshot Initiative, "Accelerated Control of Cervical Cancer", HPV-AVE Consortium (PAVE)

IPA, Center for Health Decision Science, Harvard TH Chan School of Public Health (Dr. Campos)

Declarations

- We have no conflicts of interest to report
- To avoid COI, we pay for commercial products, publish independently, and encourage more prevention methods/strategies designed for low-resource settings
- Personal perspective

Goal and Limitations of Presentation

- To show how epidemiologic understanding of HPV and cervical carcinogenesis can guide cost-effective screening strategies
 - Focus on low-resource settings where cervical cancer burden is highest
 - Short presentation shows some key principles and gives an example of one possible strategy we are studying
 - For details, please contact schiffmm@exchange.nih.gov

Disparities in Cervical Cancer Mortality Are Increasing

Disparities are specific to settings, not countries. Practice lags behind science by decades.

Dr Tedros Adhanom Ghebreyesus Director-General

Cervical Cancer: An NCD We Can Overcome Intercontinental Hotel, Geneva 19 May 2018

WHO call to action for elimination of cervical cancer

Need For Cervical Screening, by Age, Linked to Resources

Framework for a Cost-Effectiveness Analysis

Widening Scope of Cervical HPV Epidemiology, 40+ Years in the NCI IRP (Three NCAB Presentations)

Emphasis	Main Research Partners	Types of studies
Etiology and pathogenesis	Clinicians, pathologists/cytologists, molecular biologists	Looking for cause and causal pathway
Prevention methods	Immunologists, virologists, DNA diagnostics	Cohort studies and trials for vaccines and screening tests
Clinical epidemiology	Guidelines groups, optical engineers and AI, health decision scientists	Risk estimation, artificial intelligence, guidelines, prevention strategies and COST EFFECTIVENESS

Three Kinds of Cervical HPV Epidemiology, Past 40 Years in the NCI IRP (NCAB Presentation #1)

Emphasis	Main Research Partners	Types of studies
Etiology and pathogenesis	Clinicians, pathologists/cytologists, molecular biologists	Looking for cause and causal pathway
Prevention methods	Immunologists, virologists, DNA diagnostics	Cohort studies and trials for vaccines and screening tests
Clinical epidemiology	Guidelines groups, optical engineers and AI, health decision scientists	Risk estimation, artificial intelligence, guidelines, prevention strategies and COST EFFECTIVENESS

Established HPV and Cervical Cancer Causal Pathway

The Human Papillomaviruses Are Necessary Causal Agents

Burk RD et al., Nature Rev Dis Primers 2016

HPV Genotype Groups for Risk-Based Management

HPV type	% of Cervical
	Cancers

16	60.3
18	10.5
45	6.1
33	3.7
31	3.6
52	2.7
58	2.2
35	2.0
39	1.6
51	1.2
59	1.1
56	0.9
68	0.6

Cancer series and prospective cohorts reveal natural ordering among the high-risk HPV types in risk of cancer, linked to evolutionary tree

de Sanjose et al., JNCI Cancer Spectr. 2018

Widening Scope of Cervical HPV Epidemiology, 40+ Years in the NCI IRP (NCAB Presentation #2)

Emphasis	Main Research Partners	Types of studies
Etiology and pathogenesis	Clinicians, pathologists/cytologists, molecular biologists	Looking for cause and causal pathway
Prevention methods	Immunologists, virologists, DNA diagnostics	Cohort studies and trials for vaccines and screening tests
Clinical epidemiology	Guidelines groups, optical engineers and AI, health decision scientists	Risk estimation, artificial intelligence, guidelines, prevention strategies and COST EFFECTIVENESS

Preventive Measures Based on HPV and Cervical Cancer Causal Pathway

Effective Cervical Screening Finds and Treats Precancer

Helped design and/or validate multiple screening/triage methods

Clinical Epidemiology of Cervical HPV and Carcinogenesis, 40+ Years in the NCI IRP (Today, NCAB Presentation #3)

Emphasis	Main Research Partners	Types of studies
Etiology and pathogenesis	Clinicians, pathologists/cytologists, molecular biologists	Looking for cause and causal pathway
Prevention methods	Immunologists, virologists, DNA diagnostics	Cohort studies and trials for vaccines and screening tests
Clinical epidemiology*	Guidelines groups, optical engineers and AI, health decision scientists	Risk estimation, artificial intelligence, guidelines, prevention strategies and COST EFFECTIVENESS

^{*} Emphasis on Absolute Risks

Cervical Cancers Occur In <mark>1-5%</mark> of Women **How Does** HPV Epidemiology Help to Find Them?

Screening population

HPV Screening Reassures Most, Alerts Those At Risk

HPV negative reassured (low risk)

HPV positive alerted of higher risk, need management

Effective Triage of HPV Positives Finds Precancer/cancer

Perfect **triage** would find only precancer among HPV-positive

Uncommon

Accuracy equals effectiveness

- Older technologies need repetition to overcome errors
- A highly accurate test, performed less often, is preferable
- This principle is true
 - In higher-resource settings for efficiency and minimal morbidity
 - In lower-resource settings for affordability and sustainability

Microscopic Approximation of Causal Pathway

Visual Approximation of Causal Pathway

Example: Consortial Study Of a Prevention Strategy Designed to Be Cost-Effective in Low-Resource Settings

Canada

10 International PAVE Consortial Partners (up to 100,000 to be screened by 2024)

El Salvador, Dominican Republic, Brazil (2), Nigeria, Malawi (2), Tanzania, Eswatini, Cambodia

Accurate Screening When Resources are Limited

How can we do "the right thing" for the greatest number of women?

Achieving risk-based management In lower-resource settings

Choice of Management Depends on Cancer Risk

Suspect Cancer

Refer for Excision

Treat with Ablation

Increasing
Risk of
Cervical
Cancer

Self-sampling with HPV test. Visual Triage. Pre-pandemic.

Goldstein A. et al.

Application of Artificial Intelligence

- Powerful image recognition approach
- Promising results in recognizing cervical precancer
- If it looks too good to be true... (can **not** perfectly identify precancer from HPV infection)
- Be skeptical of claims; performance declines away from training setting (see Desai et al., Int J Ca 2022)

Deep Learning Not Magic Latent Model Acts as a Mimic

Automated Visual Examination (AVE) accepts gray zone equivocals near positive/negative cutpoint

Creates an ordinal variable (positive, equivocal, negative) and minimizes grave errors by pushing uncertainty into middle group

Adapting to different image collection devices (smartphones)

Creating Dedicated Device

Deep Learning Diagnostic Classifiers, Systematic Study

	Algorithm design choices	
Parameter	Level	Number of models
	densenet121	70
Architecture	resnest50	36
Architecture	resnet50	30
	swin-transformers	14
	CE	83
Loss function	CORAL	27
LOSS IUTICUOTI	Weighted kappa	34
	Focal	6
	Balanced loss	10
	Balanced sampling	31
	Remove controls	21
Balance strategy	Sampling 1:1:2	12
	Sampling 1:1:4	8
	Sampling 2:1:1	4
	None	64
	First pass Monte Carlo	62
Drop out	Full Monte carlo	62
	None	26
	3 level all patients	99
Ground truth levels	3 level, subset (ex. Grey-low, Grey-high)	20
	5 level	31

Triage Of The HPV-Positive Woman When Resources are Limited

HPV type group combined with AVE classification

Risk estimates are "under the hood"

Suspect Cancer

Refer for Excision

Treat with Ablation

Reassure

Concentration Curve - For only the screened population

Framework for a Health Decision Analysis

By Direct Measurement of Transitional Probabilities (Absolute Risk), We Need Less Calibration

Result: Increased Trustworthy Value For Health Decisions

Conclusions

- Parts of cost-effective screening program in lower-resource settings:
 - Follow HPV natural history and cervical carcinogenesis accurately
 - Screen (at correct ages) in high-risk places where prior screening is limited
 - Use HPV tests on self-collected specimens
 - Let HPV type group guide risk estimation
 - Using assistive visual method, make sure to treat the few women per 100 that make it all worthwhile
- Accurate risk estimation is achievable, but must work harder for even better affordability and sustainability
- Causal pathways, accuracy of clinical tests trustworthy costeffectiveness predictions high-grade scientific evidence

Thank you